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1 The geometry of constrained motion
Consider a localized tube of electromagnetic energy whose energy flow follows a
smooth space curve X(s), parameterized by arclength s.

Assume only the following:

1. Electromagnetic energy propagates locally at speed c along the curve.
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Figure 1: AI generated illustration of knotted trajectories on a toroidal surface.

2. The curve is smooth and closed.
3. No material medium or external forces are present.

The question is purely kinematic:

What is the effective forward speed of such a structure?

2 Unrolling the geometry
Choose a fixed spatial direction ẑ, interpreted as the macroscopic direction of
motion of the object.

Let t̂(s) = dX/ds be the unit tangent vector to the energy flow. Define the local
pitch angle θ(s) by

cos θ(s) = t̂(s) · ẑ.

Over an infinitesimal segment ds:

• The forward displacement is

dz = cos θ(s) ds.
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• Since the energy propagates along the curve at speed c, the elapsed time is

dt = ds

c
.

Therefore, the instantaneous forward velocity associated with that segment is

vforward(s) = dz

dt
= c cos θ(s).

3 Effective forward speed
Let the total length of the closed trajectory be L.

The total traversal time is

T =
∫ L

0

ds

c
= L

c
,

and the net forward displacement over one cycle is

Z =
∫ L

0
cos θ(s) ds.

Define the effective forward speed as net displacement divided by total time:

veff = Z

T
= c ⟨cos θ⟩ ,

where the arclength average is

⟨cos θ⟩ := 1
L

∫ L

0
cos θ(s) ds.

3.1 Result: Subluminal motion from geometry
Since | cos θ(s)| ≤ 1 pointwise, it follows that

|veff| ≤ c,

with strict inequality whenever the trajectory has nonzero transverse winding
over a set of nonzero measure.

The local propagation speed remains exactly c everywhere. The reduction in
forward speed is purely geometric.
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4 Momentum decomposition and inertia
Electromagnetic energy carries momentum. For a localized packet of energy E
whose local transport occurs at speed c, the magnitude of the total momentum
is

P = E

c
.

The momentum vector is tangent to the energy flow at each point. Only its
component along ẑ contributes to forward translation.

5 Forward momentum
An energy element dE carries momentum magnitude dP = dE/c directed along
t̂(s). Its forward component is

dPz = dE

c
cos θ(s).

If the energy per arclength is uniform, dE = (E/L) ds, then integrating around
the loop gives

Pz = E

c
⟨cos θ⟩ .

This is the momentum responsible for macroscopic translation.

6 Trapped momentum
The remaining momentum does not contribute to forward motion. It circulates
in closed transverse directions.

Define the effective transverse momentum as

P⊥,eff :=
√

P 2 − P 2
z .

Substituting P = E/c yields

P⊥,eff = E

c

√
1 − ⟨cos θ⟩2

.

This momentum is dynamically present but kinematically trapped.
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7 Definition of inertial mass
We define the inertial mass as the measure of resistance to acceleration arising
from momentum that does not contribute to translation.

Accordingly,

meff := P⊥,eff

c
.

Thus,

meff = E

c2

√
1 − ⟨cos θ⟩2

.

7.1 Result: Mass from circulation
• If the trajectory is everywhere straight, then ⟨cos θ⟩ = 1, so meff = 0 and

veff = c.
• If the trajectory has persistent transverse winding, then |⟨cos θ⟩| < 1, so

meff > 0 and |veff| < c.

Mass arises as a consequence of trapped electromagnetic momentum.

8 Energy-weighted generalization
If the energy density varies along the curve, replace arclength averages with
energy-weighted averages.

Define

⟨cos θ⟩E := 1
E

∫ L

0
cos θ(s) dE(s).

Then

veff = c ⟨cos θ⟩E ,

meff = E

c2

√
1 − ⟨cos θ⟩2

E .

This is the most general form consistent with light-like local transport constrained
to a closed trajectory.
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9 Topological stability
Why does the energy not simply straighten its path and eliminate its mass?

Because the trajectory is topologically constrained.

Closed electromagnetic flux tubes may form knots characterized by integer
winding numbers (m, n). These integers cannot change continuously. Eliminating
the transverse circulation would require a discontinuous reconnection of field
lines.

Therefore, once circulation exists, the associated inertial mass is locked in by
topology.

10 Final conclusion
Using only:

1. The local propagation of electromagnetic energy at speed c,
2. Euclidean geometry of curved paths,
3. Conservation of energy and momentum,
4. Topological stability of closed trajectories,

we have derived:

• Subluminal effective motion from path geometry,
• Inertial mass from circulating electromagnetic momentum,
• The existence of a frame in which the net translational momentum vanishes

(a “rest frame” for the object) while intrinsic circulation persists.

without introducing matter, constitutive media, or relativistic postulates.

Mass is not a fundamental property of matter.

Mass is electromagnetic energy constrained to circulate rather than
translate.

11 Notes
This work complements earlier derivations of emergent refraction and electromag-
netic topology in a Maxwell universe, but remains kinematically self-contained.

12 Suggested References
Rodriguez, A. M. (2026). Light speed as an emergent property of elec-
tromagnetic superposition: Polarization without matter. Preferred Frame.
https://writing.preferredframe.com/doi/10.5281/zenodo.18209801

6



Rodriguez, A. M., Mercer, A. (2026). String Theory Derivation in a Maxwell Uni-
verse. Preferred Frame. https://writing.preferredframe.com/doi/10.5281/zenodo.425370

7


	The geometry of constrained motion
	Unrolling the geometry
	Effective forward speed
	Momentum decomposition and inertia
	Forward momentum
	Trapped momentum
	Definition of inertial mass
	Energy-weighted generalization
	Topological stability
	Final conclusion
	Notes
	Suggested References

